Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 15(7): 1533-1547, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507813

ABSTRACT

Neuroinflammation plays a crucial role in the development of neurodegenerative protein misfolding disorders. This category of progressive diseases includes, but is not limited to, Alzheimer's disease, Parkinson's disease, and prion diseases. Shared pathogenesis involves the accumulation of misfolded proteins, chronic neuroinflammation, and synaptic dysfunction, ultimately leading to irreversible neuronal loss, measurable cognitive deficits, and death. Presently, there are few to no effective treatments to halt the advancement of neurodegenerative diseases. We hypothesized that directly targeting neuroinflammation by downregulating the transcription factor, NF-κB, and the inflammasome protein, NLRP3, would be neuroprotective. To achieve this, we used a cocktail of RNA targeting therapeutics (SB_NI_112) shown to be brain-penetrant, nontoxic, and effective inhibitors of both NF-κB and NLRP3. We utilized a mouse-adapted prion strain as a model for neurodegenerative diseases to assess the aggregation of misfolded proteins, glial inflammation, neuronal loss, cognitive deficits, and lifespan. Prion-diseased mice were treated either intraperitoneally or intranasally with SB_NI_112. Behavioral and cognitive deficits were significantly protected by this combination of NF-κB and NLRP3 downregulators. Treatment reduced glial inflammation, protected against neuronal loss, prevented spongiotic change, rescued cognitive deficits, and significantly lengthened the lifespan of prion-diseased mice. We have identified a nontoxic, systemic pharmacologic that downregulates NF-κB and NLRP3, prevents neuronal death, and slows the progression of neurodegenerative diseases. Though mouse models do not always predict human patient success and the study was limited due to sample size and number of dosing methods utilized, these findings serve as a proof of principle for continued translation of the therapeutic SB_NI_112 for prion disease and other neurodegenerative diseases. Based on the success in a murine prion model, we will continue testing SB_NI_112 in a variety of neurodegenerative disease models, including Alzheimer's disease and Parkinson's disease.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Parkinson Disease , Prion Diseases , Prions , Proteostasis Deficiencies , Humans , Mice , Animals , Neurodegenerative Diseases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Alzheimer Disease/metabolism , Neuroinflammatory Diseases , Down-Regulation , Parkinson Disease/metabolism , Neurons/metabolism , Prion Diseases/drug therapy , Prion Diseases/metabolism , Prions/metabolism , Inflammation/metabolism , Proteostasis Deficiencies/drug therapy , Proteostasis Deficiencies/metabolism
2.
J Vis Exp ; (198)2023 08 11.
Article in English | MEDLINE | ID: mdl-37677035

ABSTRACT

Mesenchymal stromal cells (MSCs) are potent regulators of inflammation through the production of anti-inflammatory cytokines, chemokines, and growth factors. These cells show an ability to regulate neuroinflammation in the context of neurodegenerative diseases such as prion disease and other protein misfolding disorders. Prion diseases can be sporadic, acquired, or genetic; they can result from the misfolding and aggregation of the prion protein in the brain. These diseases are invariably fatal, with no available treatments. One of the earliest signs of disease is the activation of astrocytes and microglia and associated inflammation, which occurs prior to detectable prion aggregation and neuronal loss; thus, the anti-inflammatory and regulatory properties of MSCs can be harvested to treat astrogliosis in prion disease. Recently, we showed that adipose-derived MSCs (AdMSCs) co-cultured with BV2 cells or primary mixed glia reduce prion-induced inflammation through paracrine signaling. This paper describes a reliable treatment using stimulated AdMSCs to decrease prion-induced inflammation. A heterozygous population of AdMSCs can easily be isolated from murine adipose tissue and expanded in culture. Stimulating these cells with inflammatory cytokines enhances their ability to both migrate toward prion-infected brain homogenate and produce anti-inflammatory modulators in response. Together, these techniques can be used to investigate the therapeutic potential of MSCs on prion infection and can be adapted for other protein misfolding and neuroinflammatory diseases.


Subject(s)
Mesenchymal Stem Cells , Prions , Animals , Mice , Neuroglia , Inflammation , Cytokines
3.
Front Neurosci ; 17: 1158408, 2023.
Article in English | MEDLINE | ID: mdl-37250395

ABSTRACT

Mesenchymal stromal cells (MSCs) are an intriguing avenue for the treatment of neurological disorders due to their ability to migrate to sites of neuroinflammation and respond to paracrine signaling in those sites by secreting cytokines, growth factors, and other neuromodulators. We potentiated this ability by stimulating MSCs with inflammatory molecules, improving their migratory and secretory properties. We investigated the use of intranasally delivered adipose-derived MSCs (AdMSCs) in combating prion disease in a mouse model. Prion disease is a rare, lethal neurodegenerative disease that results from the misfolding and aggregation of the prion protein. Early signs of this disease include neuroinflammation, activation of microglia, and development of reactive astrocytes. Later stages of disease include development of vacuoles, neuronal loss, abundant aggregated prions, and astrogliosis. We demonstrate the ability of AdMSCs to upregulate anti-inflammatory genes and growth factors when stimulated with tumor necrosis factor alpha (TNFα) or prion-infected brain homogenates. We stimulated AdMSCs with TNFα and performed biweekly intranasal deliveries of AdMSCs on mice that had been intracranially inoculated with mouse-adapted prions. At early stages in disease, animals treated with AdMSCs showed decreased vacuolization throughout the brain. Expression of genes associated with Nuclear Factor-kappa B (NF-κB) and Nod-Like Receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling were decreased in the hippocampus. AdMSC treatment promoted a quiescent state in hippocampal microglia by inducing changes in both number and morphology. Animals that received AdMSCs showed a decrease in both overall and reactive astrocyte number, and morphological changes indicative of homeostatic astrocytes. Although this treatment did not prolong survival or rescue neurons, it demonstrates the benefits of MSCs in combatting neuroinflammation and astrogliosis.

4.
Sci Rep ; 12(1): 22567, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581683

ABSTRACT

Prion diseases are characterized by the cellular prion protein, PrPC, misfolding and aggregating into the infectious prion protein, PrPSc, which leads to neurodegeneration and death. An early sign of disease is inflammation in the brain and the shift of resting glial cells to reactive astrocytes and activated microglia. Few therapeutics target this stage of disease. Mesenchymal stromal cells produce anti-inflammatory molecules when exposed to inflammatory signals and damaged tissue. Here, we show that adipose-derived mesenchymal stromal cells (AdMSCs) migrate toward prion-infected brain homogenate and produce the anti-inflammatory molecules transforming growth factor ß (TGFß) and tumor necrosis factor-stimulated gene 6 (TSG-6). In an in vitro model of prion exposure of both primary mixed glia and BV2 microglial cell line, co-culturing with AdMSCs led to a significant decrease in inflammatory cytokine mRNA and markers of reactive astrocytes and activated microglia. This protection against in vitro prion-associated inflammatory responses is independent of PrPSc replication. These data support a role for AdMSCs as a beneficial therapeutic for decreasing the early onset of glial inflammation and reprogramming glial cells to a protective phenotype.


Subject(s)
Mesenchymal Stem Cells , Prion Diseases , Prions , Humans , Prions/metabolism , Prion Proteins/metabolism , Neuroglia/metabolism , Prion Diseases/metabolism , Microglia/metabolism , Mesenchymal Stem Cells/metabolism , Inflammation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...